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Abstract 

An enantiomorph-dependent  probability distribution 
is derived by integrating the joint probability distribu- 
tion of two related triple-product phases with respect 
to one of the variables over the range 0 to ~r. The 
result, which is correct up to and including terms of 
order N-~, can be written as a Von Mises distribution, 
of which the mode can be anywhere between -½~r 
and +½~r. Application of the results to the X-ray data 
of a P1 structure, which could not be solved by 
conventional direct methods, is discussed. It is shown 
that resolving the enantiomorph ambiguity by means 
of the new formula leads to a successful structure 
determination, provided some alterations are made 
in the usual tangent-formula algorithm. From the 
derived distribution function a new figure of merit 
(ENFOM) is also determined which indicates whether 
a given set of phases for the largest normalized struc- 
ture factors corresponds to an E map dominated by 
only one enantiomorph, or to an E map in which 
both enantiomorphs are present. For the test struc- 
ture, ENFOM correctly classifies the different phase 
sets obtained in a multi-solution approach. 

Introduction 

The joint probability distribution of a number of 
structure factors can only be a function of origin 
(sem)invariant quantities. If the amplitudes of the 
structure factors are known, conditional probability 
distributions for origin (sem)invariant phases can be 
derived that depend on the normalized amplitudes 
only. If the relatively small effects of anomalous dis- 
persion are ignored, these amplitudes are insensitive 
to an inversion of the crystal structure, so all derived 
formulae will describe both enantiomorphs in the 
same way. In most of the non-centrosymmetric space 
groups this leads to conditional probability distribu- 
tions of (sem)invariant phases which are either uni- 
modal with their mode on 0 or 7r [e.g. the probability 
distribution of a triple-product phase (Cochran, 1955) 
or a quartet phase with three large cross terms or a 
quartet phase with threesmal l  cross terms (Haupt- 
man, 1975b)], or bimodal with their modes on • and 
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- • [e.g. the distribution of a quartet phase with three 
intermediate cross terms (Hauptman, 1975b)]. In all 
cases the formulae are symmetric around zero, which 
is a direct consequence of the enantiomorph 
ambiguity. In direct methods, most procedures are 
based on these enantiomorph-independent distribu- 
tions. This is often a serious source of trouble in the 
application of the procedures, resulting in electron 
density maps in which both enantiomorphs are pres- 
ent. Recently, it was shown by Pontenagel & Krabben- 
dam (1983) that in the eleven pairs of chiral space 
groups enantiomorph-dependent distribution func- 
tions can be derived. In these special cases, the choice 
for one space group out of the two possible ones 
automatically implies the choice for one of the two 
enantiomorphs;  the result is that then for certain 
triple-product phases a unimodal probability distri- 
bution is found of which the mode is not on zero. In 
the present paper we will show that also in P1 enan- 
t iomorph-dependent probability distributions may be 
obtained after the ambiguity is resolved by restricting 
an arbitrary triple-product phase to the range 0 to ~r. 

Procedure 

We start with the joint probability distribution P ( R I ,  

R2, R3, R4, Ri2, R23, R31; ~l, ~2, ~3, ~°4, (~i2, (~23, ~ 3 1 )  

of the magnitudes ]Eh[ , [Ekl, lEd, [Eml, I Eh+kl, I Ek+,l, 
IE,+h[ and the phases ~h, ~0k, ~0~, ~0m, ~0h+k, ~¢k+~, ~0~+h 
where h, k, 1 and m are the primitive random variables, 
subject to the condition h +k  +! +m = 0 (Hauptman, 
1975a). It has been shown previously (Heinerman, 
1976; Giacovazzo, 1977) that, under certain condi- 
tions for the reciprocal vectors, the same distribution 
is obtained if h, k, 1 and m are supposed to be fixed, 
while the atomic coordinates are considered to be the 
primitive random variables. The latter approach will 
be followed for the interpretation of our results. By 
integrating this distribution function with respect to 
the variables ~ot, ~02, ~03, ~)4, ~12, ~)23 and ~l)31 , subject 
to the conditions ~o~ + ~02 - ~0~2 = T, and ~t) 3 + ~t) 4 + ~t)12 = 

7"2 and by fixing the seven magnitudes, we obtain the 
conditional joint probability distribution P(T~, T2I R~, 
R2, R3, R4, RI2, R23, Ral) of the two triple-product 
phases ~)l  m_ ~)h "[- (4)k - -  ~ h + k  a n d  @2 = 

~P~+~P-h-k-,+~Ph+k. This distribution is integrated 
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with respect to T2 over the range 0 to zr, thus specifying 
0 -  < T2< 7r which implies the choice of an enan- 
tiomorph. The resulting P(°(T~IRI, R2, R3, R4, RI2, 
R23 , R31 ) is an enantiomorph-sensitive conditional 
probability distribution of the phase @~ in which the 
superscript (e) is added to state explicitly that it is 
valid for only one of the two possible enantiomorphs, 
as will be shown in the sequel. 

The conditional joint probability distribution of  
¢Pl = ~h + ~k -- ~h+k and ¢P2 = ~l  + ~h+k + ~--h--k--l 

The desired distribution function is easily obtained 
from Hauptman's joint probability distribution of 
seven normalized structure factors (Hauptman, 
1975a). The calculations are given in Appendix II 
and the result is 

P(TI, T2IR,, R2, R3, R4, R,2, R23, R3,) 

= C exp [2N-i/2R~R2R12 cos (TO + 2 N  -~/2 

x R3R4Rl2 cos (T2) + 2 N  -I 

×(R23 + R 2, -2)R,R2R3R4 cos ( r ,  + T2)], 

where 

C = [4"rr 2Io(2 N -'/2R~ R2R,2)Io(2 N -'/2R3R4R,2)]-'. 

From (1) it follows that the most probable value for 
the phase pair (@~, @2) will always be (0, 0) if (R23 + 
R320- > 2. An example of such a probability distribu- 
tion is given in Fig. l(a). If, on the other hand, 
(R23 + R E 0 < 2 ,  the position of the maximum of (1) 
depends also on the relative values of the other five 
magnitudes. Especially when RI2 is not too large, the 
most probable value for (@~, ~2) can differ consider- 
ably from (0, 0) (see Fig. 1 b for an example). Note 
that if R~2=0, (1) does not depend on Tl and T2 
separately, but only on their sum. As in this case the 
amplitudes of the triple products EhEkE_h-k and 
E~Eh+kE-h-k-~ are both equal to zero, we cannot 
expect any information about their phases. The only 
possible phase information concerns the quartet 
EhEkEiE_h_k_l with a phase equal to ((~21+(~22). 
Integrating (1) with respect to T~ and T2 both from 
0 to 27r under the condition Ti + T2 = Q leads to 

P(QIRI, R2, R3, R4, R12, R23, R31) 

= K exp[2N-'(R22+R23+R2,-2) 

x RlR2R3R4 cos (Q)], 

which was also obtained by Heinerman (1976) after 
rewriting Hauptman's results in exponential form. 

The enantiomorph-dependent conditional probability 
distribution of  the phase ~ i  = ~h + ~k--  ~h+k 

From (I) we can calculate 

P(T,. T2IR,, R2, R3. R4, R,2, R23. R3,) dT2 
o 

= C'P(e)(TI[RI, R2, R3, R4, RI2, R23, R31), (3) 

in which C'  is a suitable normalizing constant. 
With the reciprocal-lattice vectors fixed and the 

atomic position vectors the primitive random vari- 
ables, C'P(°(T11RI, R2, R3, R4, R12, R23, R30 dTl 
gives the fraction of the total number of possible 
structu.res with N atoms in the unit cell for which the 
following conditions are fulfilled: 

Tl--< ~ l <  Tl + d TI (4) 

0 <- ~2 < 7r, where (~2 = ~1 -b ~h+k "~ ~-h-k-I  (5) 

led-- R,, IEkl = R2, [Ell----- R3, [E.+k+ll = R4, 

IEh+kl = U,2, IEk+ll = R23, IEl+,l = R31. (6) 

Condition (5) implies that this fraction does not con- 
tain two structures that are related by an inversion 
centre. Therefore, the integration in (3) implicitly 
means the choice of an enantiomorph as, of all pairs 

(1) of enantiomorphously related structures, only one 
member remains in the sample space of p(e). The 
calculations are given in Appendix III and the result 
is 

P(°(TiIRI, R2, R3, R4, RI2, R23, R31) 

= K exp [2N-I/ERIRERI2 cos (T~) 

-4"n "-~ N-~(R23 + R2~- 2)R~R2RaR4 sin (TO]. 

(7) 

Integrating T2 from 7r to 27r in (3) corresponds to the 
choice of the other enantiomorph. From Appendix 
III it is easily seen that the result is analogous to (7); 
the only difference appears in the sign of the enan- 
tiomorph-sensitive sine term. 

Both situations can be described by a Von Mises 
distribution (Heinerman, Krabbendam & Kroon, 
1977): 

P(e)(TIIRI, RE, R3, R4, R12, R23, R31) 

= K exp IX cos (TI +e)],  (8) 

where X 2 = A 2 +s2B 2, A = 2N-1/ER1R2RI2, B = 
2N-~(RE3+R2~-2)R~R2RaR4, X cos (e) = A, 
X sin (e )=  sB, s = +2/7r if T2 has been integrated 
from 0 to 7r, s = -2 / z r  if T2 has been integrated from 
7r to 27r, K = [27rI0(X)] -! 

Equation (8) is unimodal in the range 0-< T~ < 2~r 
and the maximum is found at 

(2) T~ °de = - e  = -arc tan  [sB/A] 

= -arc tan  [sN-l/E(g23 + R21 - 2)g3R4R-~21]. 
(9) 
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Interpretation of the derived distribution 

The effect of the 'enant iomorph-dependent '  integra- 
tion of T2 on the probability distribution of ~ can 
be visualized in Fig. 1. Integrating 7"2 from 0 to ~r 
(/.e. s = +2/~r) is equivalent to projecting the posterior 
half of  the figure on the axis T~. It is obvious from 
the drawings that in Fig. l(a)  the resulting distribution 
function will have a mode at the left of the origin; 
in fact from (9) it follows that the mode is approxi- 
mately at - 5 4  °. On the other hand, in Fig. l(b) the 
mode of the resulting distribution function will be at 

the right of the origin if the posterior half of the figure 
is projected on the axis TI. For this example (9) leads 
to a mode in the vicinity of +36 °. 

It is of  interest to compare (8) with the distribution 
obtained by projecting the whole figure on the axis 
T~. This is equivalent to integrating (l)  with respect 
to 7"2 over the range 0 to 2Ir. After employing (I . l ) -  
(I.3), (I.4) leads to 

P( TI[R~, RE, RI2)=L' exp [A cos (Tin)], (10) 

where L ' =  [2~rlo(A)]-', which is identical to the well 

(a) (b) 

Fig. 1. The conditional joint probability distribution of  two triple-product phases. T~ runs from left to right from -~r to +~r; 7"2 from 
the front to the back from -~- to +~r. For the sake of  clarity the contour diagrams, on an arbitrary scale, are also given. Both figures 
are calculated from equation (1) for an idealized structure in PI  with N = 29. The examples are taken from Hauptman (1975b). (a) 
Rm = 3-034, R 2 = 2"863, R3 = 2-023, R4 = 2"012, Ri2 = 1 "732, R2a = 0"997, R31 = 2"454; (b) R I = 2-862, R2 = 2"672, R 3 = 2"275, R4 = 1 "700, 
Ri2  = 1"106, R2a =0-404, R3t =0-222. 
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known Cochran distribution (Cochran, 1955). Note 
that (8) reduces to (10) if we define s = 0 if ~ 2  c a n  

be anywhere between 0 and 2~r. Distribution (10), 
correct up to and including terms of order N -~, only 
depends on R,, RE and Rl2 and always has its mode 
on zero, while (8) depends on all seven magnitudes 
and may have its mode anywhere between -½7r and 
+½7r. [Note that cos (TT °de) is always positive.] The 
larger the extra four magnitudes R3, R4, R23 and R31 , 
the more the variance decreases and the more the 
mode differs from zero. The latter effect is more 
pronounced if Ri2 (i.e. the amplitude of the structure 
factor involved in both triple products) is not too 
large. 

In this context it is noted that the probability distri- 
butions used in this paper are only correct if they can 
be written as a converging series of powers of N -U2. 
Therefore, it follows that the order N - '  terms should 
be small compared to the order N -1/2 terms, which 
leads to the conclusion that, strictly speaking, the use 
of(8) is limited to those cases for which IBI < A. The 
examples used in Fig. 1 do not fulfil this condition 
but they clearly show the two limiting characteristics 
of (1). The four magnitudes R3, R4, R23 and Ral 
corresponding to [E,[, IE-~-k-,I, IEk+,l and IE,÷~I, 
respectively, all belong to the second phasing shell 
of the triple product EhEkE-h-k as defined by 
Giacovazzo (1980). These amplitudes were thought 
to influence the probability distribution of the triple- 
product phase only in the terms of order N -3/2, 
whereas the extra terms in (8) are of order N-~; 
apparently the extra information about the related 
triple-product phase ~2 is sufficient to promote a part 
of the second phasing shell in such a way that it 
effects the order N-~ terms of the probability distribu- 
tion of ~, .  As the relation between qb~ and ~2 is only 
based on the common structure-factor phase ~0h+k, 
we conclude that choosing an enantiomorph via 
restrictions on the phase of E,E_u_k_~Eh+k influences 
the distributions of the phases of all triple products 
containing either E, or E - h - H  or Eh+k. 

The choice of an enantiomorph in phase-determining 
procedures. A practical test 

Equation (8) can be used in an active way in normal 
direct-methods procedures by first selecting a triple 
product to specify an enantiomorph and then calcu- 
lating via (8) the modes and variances of the distribu- 
tions of all triple products having one structure factor 
in common with the 'enantiomorph definer'. This was 
tested on the crystal structure of calcium trilactate 
trihydrate (CaC909HI6.3H20; space group P1 with 
a=5 .823 ,  b=8.295,  c=8.975/~,  a=78 .39 ,  f l =  
73"61 and T = 75.19°). All attempts to solve this prob- 
lem with conventional direct-methods procedures 

• were unsuccessful. Only with the support of the 
measured Bijvoet differences caused by the 

anomalous scattering of the calcium atom could the 
structure be determined. Details of this work will be 
published in a forthcoming paper. From the initial 
failures it was clear that the major problem concerned 
the definition and maintaining of an enantiomorph. 
In particular, the iterative use of the tangent formula 
for phase refinement drove all phase sets in a few 
cycles to (pseudo)centrosymmetric solutions of which 
the E maps could not be interpreted. Therefore this 
structure seemed to be a good example to test whether 
the application of (8) could restrain the phase refine- 
ment. With the MULTAN78  system (Main, Hull, 
Lessinger, Germain, Declercq & Woolfson, 1978) 
amplitudes of normalized structure factors were 
calculated from 1545 unique reflexions which were 
considered to be observed [I _> 2½tr(l)]. Subsequently, 
the 188 largest E values were passed to the SIGMA- 
TWO routine, resulting in l l l 2  unique triple pro- 
ducts. Each of these invariants could in principle be 
used to define an enantiomorph, but a sensible choice 
could be made keeping the following requirements 
in mind: (a) the chosen 'enantiomorph definer' must 
have many related triple products with one structure 
factor in common; (b) the phase of each of these 
related triple products should have a probability dis- 
tribution of type (8) with a small variance and a mode 
considerably differing from zero. A small variance is 
obtained by using large normalized structure factors, 
as can be seen from (8), but from (9) it follows that 
the larger the value of R~2, the more the mode 
approaches to zero. As we aimed primarily at enan- 
tiomorph-sensitive phase indications, emphasis was 
put on the requirement concerning the mode. 
Equation (9) then led to the definition of the following 
parameter for a triple product Eh, Eh2Eh3(h I ÷ h 2 ÷ h 3 = 
0): 

s = IEh,I IEh211E,,,I-' nh, ÷ IE ,l IE 311E 21-' 

+lfhJIE,,,llE,,,I-'nh,, (l l) 

where only the 188 largest E values were considered 
and where nu, (i = 1,2, 3) means the number of large 
triple products containing En,. The triple product 
Es~oEo2~Ee~i- (with A = 2 N - ~ / 2 E E E  =4.22 and 
q~t~e = - 5 ° * )  resulted in the largest value of S and 
was therefore chosen to define an enantiomorph. 
Then, by employing(8) with s = +2/7r, the modes and 
variances of the distributions p<e) of 105 related triple- 
product phases were calculated. In these calculations 
the unobserved E values were put equal to their 
expected values (IEI 2= 1.0). The remaining 1007 rela- 
tions were processed in the usual way via the Cochran 
distribution (10). 

* t~true was calculated from the parameters of the refined crystal 
structure with the correct absolute configuration. 



318 THE CHOICE OF AN ENANTIOMORPH 

In a convergence procedure, based on all 1112 ~2 
relations, the order in which the phases were to be 
generated and refined by the tangent formula was 
determined. Noteworthy was the fact that most of the 
enantiomorph-dependent phase indications appeared 
in the bottom of the convergence map. The reason 
for this is that a variance calculated from the seven- 
magnitude distribution (8) tends to be smaller than a 
variance calculated from (10). In fact, for a given 
triple product, (8) can never lead to a variance larger 
than the one obtained from (10). After fixing an origin 
by assigning arbitrary phases to three linearly 
independent structure factors, 50 different starting 
sets of phases were generated by permuting five other 
phases via a magic-integer representation. After 
application of the MULTAN78 routine FASTAN it 
appeared that, in spite of the non-centrosymmetric 
phase indications in the early stages of the phase 
expansion, all 50 sets refined to the same over- 
consistent pseudo-centrosymmetric solution with 
figures of merit 1.36, 2.58 and 10.92 for ABS FOM, 
PSI-ZERO and RESID, respectively. In our local 
packet of direct-methods procedures (the REDUC 
system; to be published) a different algorithm is used 
for the application of the tangent formula. The 
alternative was developed especially for application 
in connection with a multi-solution approach of the 
phase problem and can best be seen as a restraint on 
the phase refinement which prevents a phase set refin- 
ing to a solution which bears no relation to the chosen 
starting phases. More details of the procedure are 
given in Appendix IV. Application of the procedure 
to the enantiomorph-sensitive set of Y~2 relations 
resulted in 18 different solutions out of 64 different 
starting points. Some relevant data of the 18 sets are 
given in Table 1. E maps were calculated for the six 
most promising sets as indicated by the COMBINED 
FOM. The numbers 3, 17, 36 and 9 again failed to 
show interpretable lactate fragments among the 30 
highest peaks (set 3 is identical to the one found by 
FASTAN). Set 26, however, could be interpreted 
without many difficulties; apart from the calcium 
atom, three fragments were found, each consisting of 
five peaks and all three compatible with the expected 
lactate groups. From subsequent Fourier syntheses 
based on these parameters the complete structure was 
easily obtained. In Fig. 2 an outline of the refined 
structure is given. Inspection of the initial E map 
showed afterwards that 18 of the 22 atoms were 
present among the 30 highest peaks, while only six 
peaks appeared to belong to the inverted structure. 
The predominance of one enantiomorph compared 
to the other is clearly demonstrated in Table 2 where 
the 30 highest peaks of four relevant E maps are 
classified in three groups: (a) peaks belonging to the 
true enantiomorph as found from the Bijvoet differ- 
ences [labelled as O(1), C(1 ) etc.]; (b) peaks belonging 
to the inverted structure (labelled as iO(1), iC(1) etc.) 

Table 1. Figures of merit for the 18 different solutions 
obtained after application of the tangent formula via 

the described modified algorithm 

The C O M B I N E D  FOM is calculated with unit weights for 
ABS FOM, PSI ZERO and RESID. The numbers between paren- 
theses refer to classifications of the sets based on the individual 
figures of  merit. The parameter ENFOM is described in detail in 
the main text. 

Set No. ABS F O M  PSI Z E R O  RES1D C O M B  FOM E N F O M  

I 1.15(16) 2.29(3) 17.24(18) 0.84(18) 0.102(5) 
2 1.22(6) 2.41 (10) 12.65(7) 1.55(7) 0-099(7) 
3 1.36(1) 2.58(18) 10-88(I) 2.00(I) 0.026(18) 
4 1-09(18) 2.10(1) 16-97(16) 1.04(16) 0-123(1) 
9 1-27(2) 2.53(17) 11.85(3) 1.61 (4) 0-070(17) 

13 1-12(17) 2.31 (4) 14.60(14) 1.08(15) 0.120(2) 
17 1-25(3) 2.43(12) 11-69(2) 1.77(2) 0.085(15) 
19 1,21 (9) 2.46(13) 12,80(8) 1.41 (I 1) 0-092(13) 
23 1.22(7) 2.47(14) 12.57(6) 1.44(10) 0.094(11) 
26 1.19(13) 2-31 (5) 13.24(10) 1.58(5) 0-103(4) 
29 1.25(4) 2.48(15) 12.35(5) 1.58(6) 0-086(14) 
36 1.22 (8) 2-35 (7) 12.82 (9) 1,66 (3) 0.097 (9) 
38 1.19(11) 2.38(8) 14.30(13) 1.26(13) 0.094(12) 
41 1.19(12) 2-42(11) 13.31 ( 1 1 )  1-34(12) 0.102(6) 
43 1.18(14) 2-31 (6) 13-66(12) 1.47(9) 0.106(3) 
45 1.25(5) 2-52(16) 12.07(4) 1-53(8) 0.078(16) 
50 1.17(15) 2-27(2) 17.11 ( 1 7 )  0-96(17) 0.098(8) 
56 1.20(10) 2.38(9) 15.07(15) 1.17(14) 0.095(10) 

and (c) non-interpretable peaks (labeled as ?). The 
results of sets 3 and 36 are included to show the 
difficulties with the definition of an enantiomorph. 
In set 3 both enantiomorphs are almost equally well 
represented and it is clear that this pseudo-centrosym- 
metric solution could not be interpreted. In set 36 
most of the highest peaks correspond to only one 
enantiomorph. The reason that this solution was 
rejected at first is that most of the carbon atoms, 
necessary to form a reasonable lactate fragment (see 
Fig. 2), are not present among the 30 highest peaks. 

From set 3, via set 36, to set 26 the PSI ZERO 
figure of merit gradually drops while the preference 
for one enantiomorph appears to increase. The results 
related to the E map of set 4, being the one with the 
best PSI ZERO indication, are also given in Table 2, 
where it can be seen that the preference for the chosen 
enantiomorph is even more pronounced. In spite of 
the unpromising values for ABS FOM and RESID, 

C(6) 
C 1 5 1 ( ~ ~  °(a) 

CA ~ C 1 9 1  
(~o(2) ~ 0 o ( 1 0  ) L._.) °(8) 

(•o(11) (~(12) 
Fig. 2. Outline of the test structure projected approximately on 

the least-squares plane. 
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Table 2. Interpretation of the 30 highest peaks in the 
calculated E maps 

In all sets the first peak is about two or three times as large as the 
second one. The heights of  peaks 2 to 30 gradually decreases in 
all sets. Peaks labeled O(1), C(I) etc. correspond to atomic positions 
of  the true enantiomorph as found from the Bijvoet differences. 
Peaks labeled iO(l), iC(I) etc. correspond to the (through the 
calcium atom) inverted structure. 

Peak Set 26 Set 3 Set 36 Set 4 

I Ca Ca Ca Ca 
2 iO(l) 0(5) iO(l) i0(5) 
3 iO(8) iO(5) iO(5) iO(l) 
4 iO(5) O(1) iO(8) iO(8) 
5 0(5) i0(3) 0(5) iC(1) 
6 ? 0(8) ? iO(4) 
7 ? ? iO(3) iO(3) 
8 iC(I) 0(9) iO(l l) iC(7) 
9 iO(2) iO(4) iC(I) ? 

l0 0(9) 0(2) iO(7) ? 
11 O(3) iO(9) ? iC(2) 
l 2 iC(5) iO(l l) ? iO(7) 
l 3 iO(3) iO(8) iO(9) 0(7) 
14 iO(9) iO(l) 0(4) O(l I) 
15 iO(! l) O(l l) iC(2) 0(4) 
16 O(l l) ? 0(9) iO(2) 
17 iO(7) ? ? iC(5) 
18 0(4) iO(7) iO(6) iO(I l) 
19 iO(4) C(5) iO(4) iO(9) 
20 .9 c(1) .9 0(3) 
21 ? 0(7) C(4) iO(6) 
22 ? ? O(11) iC(4) 
23 iO(12) 0(3) 0(7) iO(12) 
24 iO(6) C(4) ? iC(8) 
25 iC(4) iC(l) ? .9 
26 iC(2) ? iO(2) ? 
27 iC(7) ? 0(2) 0(9) 
28 0(7) ? 0(8) ? 
29 ? C(9) 0(3) ? 
30 iC(8) i0(2) iC(5) ? 

this set appears to give the best solution. The three 
lactate fragments can easily be found among the 
highest peaks although the geometry is somewhat less 
accurate compared to the result of set 26. The pre- 
dominant enantiomorph in the described solutions is 
in agreement with the choice for s = +2/7r in (8); i.e. 
the choice that the phase of Es,oEo21E~T must lie 
between 0 and 7r. 

Repetition of the described calculations with s = 
- 2 / r r  led to results comparable to those obtained 
before, but now, as expected, the true enantiomorph 
dominated the final E maps. Although the single 
triple product EsloE2olE~yf-does not seem to be a 
very suitable invariant to resolve the ambiguity 
(@true = - 5 ° ) ,  employing it via (8) clearly leads to 
satisfactory results. Apparently the simultaneous 
effect of the derived phase indications is sufficient to 
obtain a set of structure-factor phases which corres- 
pond to an E map dominated by the chosen enan- 
tiomorph. 

The enantiomorph-sensitive figure of merit ENFOM 

Apart from the active application, as described in the 
preceding section, (8) can also be used for the defini- 

tion of an enantiomorph-sensitive figure of merit. If 
(8) is applied to triple products formed from the larger 
E values only, the parameter B is expected to be 
positive, no matter which pair of triple products is 
considered. Therefore, for any pair EhEkE-h-k and 
E_hE~Eh_, of large triple products, the expected 
phases will be in opposite hemicycles of the Argand 
diagram. This leads to the conclusion that all large 
triple products EhEkE-h-k for fixed h and arbitrary 
k are expected to have a phase in the same hemicycle 
of the Argand diagram if the enantiomorph has been 
specified. This characteristic can be used to rank 
refined phase sets according to their ability to describe 
only one enantiomorph. If ENFOM is defined as 

/ 
where only the T terms for which EhEkE_h_k is large 
are considered, ENFOM will always be between zero 
and unity; small values of the parameter indicate the 
absence of the described clustering of related triple- 
product phases in a hemicycle of the Argand diagram, 
while the larger values of ENFOM point to a phase 
set which follows (8). ENFOM was calculated for the 
18 phase sets described in the preceding paragraph 
and the results are given in the last column of Table 
1. Set 4 leads to the largest value of the figure of 
merit, which indicates that the corresponding E map 
will be dominated by only one enantiomorph. As 
described before, it can be seen in Table 2 that this 
is indeed the case. Also, set 26, which was the first 
one which revealed a large part of the structure, leads 
to a promising value of ENFOM. 

By far the smallest value of ENFOM is found for 
set 3, which indicates the absence of the clustering 
of triple-product phases. The E map of this set is 
therefore expected to contain peaks belonging to both 
enantiomorphs. 

From the results we conclude that ENFOM leads 
to a valuable indication for the correctness of a phase 
set in a non-centrosymmetric space group. 

Concluding remarks 

The derived enantiomorph-dependent conditional 
probability distribution of a triple-product phase 
(equation 8) was shown to be of practical importance 
in the determination of a P l structure. Apart from 
the active use of the new formula, a passive applica- 
tion in the form of an enantiomorph-sensitive figure 
of merit was described. The basis of the new figure 
of merit ENFOM is (8) from which it was concluded 
that the phases of related large triple products are 
expected to cluster in the first or fourth quadrant of 
the Argand diagram. Qualitatively this effect can be 
explained from the fact that the number of positive 
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quartets (Le. quartet invariants with an expected 
phase of 0) is far greater than the number of negative 
quartets (the expected phase is 7r). Therefore, it is 
anticipated that two triple products, which together 
form a quartet (i.e. E, EkE-h-k and E_hE~Eh-O, will 
have phases which tend to sum to zero; so if one 
phase is between 0 and 7r, the other one will be found 
between rr and 27r more often than between 0 and 
7r. This indicates that the enantiomorph-dependent 
formulae for triple-product phases, as derived in this 
paper, are strongly correlated to the distribution func- 
tion of a quartet invariant. 

Note 

After the manuscript had been submitted, one of 
the referees pointed out a paper by Hauptman (1977) 
in which enantiomorph-dependent probability distri- 
butions are also derived. Starting from the 13 structure 
factors in the third neighbourhood of a quartet 
invariant, he derived an expression (P2/~3) for the 
joint probability distribution of two related quartet 
phases (qbl,, = ~t)h+~Ok+(~Ol+~)  m and ~ p q  = ( tDh+~t)k+ 

~pp + q~q). This P2/~3 is given in a mixed form containing 
both Bessel functions and exponentials. Hauptman 
concludes that P2/~3 has, in general, two maxima 
which are related by inversion through (0, 0). By 
choosing one or the other maximum, an enan- 
tiomorph may be selected which may lead to a number 
of enantiomorph-sensitive (conditional) probability 
distributions. However, the procedure is only 
appropriate if P2/~3 has a pronounced maximum on 
an enantiomorph-sensitive position [i.e. different 
from (0, 0), (0, rr), (Tr, 0) of (Tr, 7r)], which is in strong 
contrast to the possibilities of the present approach. 

The author wishes to thank Drs Heinerman, Krabben- 
dam and Kroon and Professor Peerdeman for their 
interest and encouragement in this work and for valu- 
able criticism on the manuscript. 

A P P E N D I X  I 

Some formulae 

From elementary trigonometry (Hauptman, 1971), 

~,Aicos(~o+ai)=X cos(¢+e) ,  (I.1) 
i 

where X 2 = E E AiAj cos (ai - otj) (1.2) 
i j 

X cos (e) = ~  Ai cos (ai) (I.3a) 
i 

From (Abramowitz & Stegun, 1970, p. 376, formula 
9.6.16) 

exp [z cos (tp)] d~ = 1rio(z), (1.4) 
0 

it follows that 

2rr 
exp[z cos (~ + e)] d~ = 27rlo(z), 

0 

where Io(z) is the modified Bessel function of the first 
kind of order zero. For an expression for Io(z) in the 
form of an ascending series of powers of z we obtain, 
from Abramowitz & Stegun (1970, p. 375, formula 
9.6.12), 

Io(z)= 1 +~z 2+~4z 4 + . . .  

= exp (¼z2)(1 +terms of order z 4 + . . . ) .  (1.5) 

APPENDIX II 

The derivation of (I )  

For an expression of the joint probability distribution 
of the magnitudes and phases of the seven normalized 
structure factors Eh, Ek. E ,  E-h-k-,.  Eh+k, Ek+, and 
E,+h we refer to formula (2.5) of Hauptman (1975a) 
which is correct up to and including terms of order 
N-~ that depend on the phases. The joint probability 
distribution of the two triple-product phases ~ and 
~2 can be obtained by integrating with respect to the 
seven variables ~ ,  ~2, ~3, ~4, ~2, ~23 and ~3l subject 
to the conditions ~, + ~2 - ~2  = T~ and ~3 + ~04 + ~2 = 
T2. This is most conveniently done by first collecting 
all terms in the exponent which depend on ~3~, and 
combining them using (I.1)--(I.3). We obtain 

2N-i /2R 1R3R31 cos (~Pl + ~03 - -  ~l)31) 

+2N-I/2R2RaR31 COS (~D 2 + ~O 4 + ~31)  

-2N-lRIRER23Ral cos (q~l - -  ~t)2 + ~ 2 3  - -  ~ 3 1 )  

--2N-IRaR4R23Ral cos (~P3 - ~°4-- ~023 --  ~°31) 

- 2N -1R2R3R31RI2 COS ( ~ 2  --  ~ 3  + ~31 --  ~£)12) 

- 2 N  -IRl R4R31R12 cos (~Pl - ~P4- ~P3, - ~Pl2) 

= X31 cos (~P31 + e30, (II.1) 

where 

X21 4 N - l  2 2 2 = R31[RIR3+R2R 2 

+ 2Rt R2R3R4 cos  (~Pi + (4:)2 + (~3 + ~ 4 ) ]  

+terms of order N -3/2. 

X sin (e )=  E Ai sin (ai). 
i 

(I.3b) Because X3~ and e3! are independent of ~3~ the 
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integrat ion with respect  to q)31 is easily obta ined using 
(I.4): 

P(~Ol, ~02, ~03, ~4, ~i2, ¢P23; RI ,  R2, R3, R4, Rl2, R23, R 3 0  

= 2" ir -6RIRERsR4RlERE3R3!  

x e x p  [ - R ~ -  R22 - R 2 -  R 2 -  R22 - R223 - R 2, 

+2N-I/ERIR2RI2 cos (q~! "~t" ~2--  ¢i012) 

+2N-l/2RsR4RI2 cos (tp3 + ~4 -~" ~12) 

+2N-I/2R2R3R23 cos (tp2 + tp3- tp2s) 

+2N-I/2RIR4R23 cos (¢Pl + tp4 + ~02s) 

-2N-tRIR3RI2R23 cos (tpl - ~03 - ~12 "lt- ~23) 

- 2 N  -i R2R4RI2R23 cos ( ~ 2 -  q~4-- ~ 1 2 -  ~023) 

-4N-~RIR2R3R4 cos (¢p~ +tp2 +~3 + ~04)] 

x Io[X3~]. (11.2) 

Formula  (II.2) is correct  up to and including terms 
of  order  N -~ which depend  on the phases.  Because 
the a rgument  of  the Bessel function ,is independent  
of  ¢P23 within the given order  of  accuracy,  the integra- 
tion with respect to ¢P23 can be per formed using the 
same procedure.  The result is 

P(~ol, ~02, ¢~3, ~4, ~012; RI, R2, R3, R4, Rl2,  R23, R31) 

= 47r-SRlR2R3R4RI2R23Ral 

x e x p  [ - g  2 -  g 2 -  g ~ -  g ~ -  R22 - R23 - g ~  

+2N-I/2RI R2RI2 COS (~1 "~ ~2 -- ~12) 

+2N-I/2RaR4R12 cos (~03 + ¢P4 + tpl2) 

- 4 N -  l R l R2 R3 R4 cos (~01 + ~02 + ~3 -~- ~4)] 

x Io[Xa~]Io[X23], (II.3) 

where 

X223 4N-~ 2 2 2 2 2 = REa[RER 3 + R i R 4 

+2R~ RER3R4 cos (~0~ + ¢P2 + ¢P3 + ¢P4)] 

+ terms of  order  N -3/2. 

After the substi tut ions ~01 = T~ - ~02 + ~!2 and ~03 = 
T2-~04-~0~2 the distr ibution function appears  to be 
independen t  of  ~02, ~04 and ~0~2, leading to a trivial 
factor of  (2~r) 3 when the integrations with respect to 
these three variables are performed.  After fixing the 
seven magni tudes  the condit ional  jo int  probabi l i ty  
distr ibution of  the phases @~ and @2 is obtained:  

P(T~, T21R~, R2, R3, R4, R~2, R23, R30 

= LIo[ Y3~]Io[ Y23] exp [2 N -~/2R~ R2R~2 cos (T0  

+ 2 N - I / E R a R 4 R I 2  COS (T2) 

- 4 N  -~ R~R2RaR4 cos (T~ + T2)], (II.4) 

where L is a suitable normalizing constant ,  

y 2  = 4 N - , R E  [R2R23+R2R42 2 

+2R~R2R3R4 cos (T~ + T2)] 

+ t e rms  of  order  N -3/2 

and 
y23 - i 2 2 2 = 4 N  R23[RER3 + R2R 2 

+2RIRERaR4 cos (T~ + T2)] 

+ t e rms  of  order  N -3/2. 

Using (1.5) we rewrite the Bessel functions in 
exponent ia l  form leading to 

P(TR, TEIRI, R2, R3, R4, RI2, R23, R31) 

= C exp [2N-I/2RIR2RI2 cos (Tl) 

+ 2 N - l / E R s R 4 R I 2  COS (T2) 

+ 2N- I (R2s  + g21-  2)R~R2R3R4 cos (Ti + T2)]. 

(II.5) 

The normaliz ing constant  C can be obtained by 
integrating (II.5) with respect to T~ and T2 from 0 to 
2~r and setting the result  equal to unity. Retent ion of  
terms up to and including order  N -~ leads to 

C = [47r 2 Io(2 N -'/2R, RER,2)Io(2 N -'/2 RsR4R,2)]-' 

(II.6) 

APPENDIX III 

The derivation of (7) 

From (1) and (3) it follows that  

Pte)(T, IR, . . . R3,) = C' S exp [A, cos (T,) 
o 

+ A 2 COS (T2) + B cos (Ti + 7"2)] d T2, 

where 

Al = 2 N - I / 2 R  l R2R!2  , A 2 = 2 N - I / 2 R s R a R I 2 ,  

B = 2N-I(R223 + RE1-2)R~RERaR4 

and C '  is a normalizing constant.  
Expanding  the exponent  in a power  series we get 

C '  ~ [1 + A l  cos (Tl) +A2 cos (T2) + B  cos (Tl + T2) 
o 

1 2 +~A1 cos 2 ( T 0  I 2 +~A2 cos 2 (T2) 

+ AIA2 cos ( T  0 cos (T2) 

+. . .  + 0(N-3/2)] d T 2 

= C'Tr(1 +AI  cos ( T 0 - 2 ~ r - ~ B  sin ( T 0  
i 2 1 2 +~A1 COS 2 ( T 0  + . .  +~A2 .). (III.2) 

( I I I . l )  
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As ( l + x ) = e x p [ l n ( l + x ) ] = e x p ( x  , 2_ t  3 --~X -t-~X + . . . ) ,  
the exponential form of the conditional probability 
distribution, correct up to and including terms of 
order N -j,  becomes 

P(e)(TtlR, . . .  R31 ) = L exp [AI cos (Tt) 

- 2 7 r - l B  sin (T~)], (III.3) 

where L is a suitable normalizing constant. (1II.3) 
can be written in the more familiar form of a v o n  
Mises distribution. As s i n ( T 0 = c o s  (T~-½zr), (I.1)- 
(I.3) lead to 

P(e)(T, IR~ . . .  R3t) = Lexp  [x cos (T! +e)] ,  (III.4) 

where x 2 = A21 +4zr-EB 2, x cos (e) = At and 
x sin (e) - 2zr-t B. 

The normalizing constant L now follows directly 
from (I.4): 

L = [2 7rlo(x)] -t 

APPENDIX IV 

An alternative algorithm for the application of the 
tangent formula 

The weighted tangent formula, which is frequently 
used for phase expansion and refinement in direct 
methods, can be written as 

~'. WkWh_kQhk sin (~Pk + ~Ph-k + qhk) 
k 

tan (~,) - 
~, WkWh-kQhk COS (~k  -t- ~0h_ k -t- qhk)' 
k 

(IV.l) 

where wk and Wh-k are the weights associated with 
the phases ~Pk and ~Ph-k; qhk is the most probable 
phase of the ~2 relation (~h--Ck--Ch-k) and Qhk is 
the parameter associated with the variance of the 
phase indication Ch-  Ck-  Ch-k" qhk. In a multi- 
solution approach several trials of numerical values 
for a small set of phases are put into (IV.I) as a 
starting point. After expansion to a complete set, the 
refinement can be seen as a search for a possible 
solution of the phase problem in a region around the 
starting phases. Such a solution is indicated by a 
reasonable correspondence between the left- and 
righthand side of (IV. 1). The variable structure-factor 
phases are modified in such a way that they fit as well 
as possible to the assumed ~2 relations. To make full 
use of the multi-solution principle it is essential to 
find local extremes rather than the absolute best fit 
between the left- and righthand side of (IV.l). If the 
assumed Y~2 relations are (almost) perfectly consistent 
with each other, the absolute best fit is so pronounced 
that nearly any starting point will lead to that solution 
if no special precautions are taken. Such a stabi- 
lization can be performed in numerous ways via 

restrictions on the variable parameters, but then the 
available ~2 relations will remain, indicating that a 
better fit will be found if the restraints are relaxed. 
A good alternative is provided by the following rea- 
soning. 

If at some stage of the refinement a phase Ch is 
calculated with unit weight, we accept this phase to 
be 'almost correct'. This means that, although its value 
can still be refined, it is already used as a reliable 
phase indication. If then the summation in (IV.l) 
contains terms for which simultaneously wk = 1.0 and 
wh-k = 1.0, the most probable phase for the Y~2 relation 
Ch--¢k--¢h-k can be calculated from the current 
values of ~Pb, ~Pk and ~Ph-k- 

By ascribing this phase to the parameter qhk in 
(IV. 1) we are sure that the most predominant indica- 
tions for Ch are more or less consistent with the current 
value of Ch- Therefore, we expect in the next cycle 
of refinement a relatively small change in the value 
of Ch, thus decreasing the tendency of a gradual drift 
towards a solution far away from the starting point. 
The overall effect of the 'selective updating of triple- 
product phases' can now be seen as restricting 
the possible solution for a set of phases to be in the 
neighbourhood of the chosen starting point. If the 
multi-solution approach scans phase space effec- 
tively, we expect to find, besides the most pronounced 
solution (which is in P1 almost invariably wrong) a 
number of local extremes in the fulfilment of (IV.I). 
Calculations have shown that the rate of convergence 
of our procedure is very high; in a few cycles it ends 
at some point in the high-dimensional phase space. 
Next, all triple-product phases are reset to their initial 
values and the complete set of structure-factor phases 
is allowed to refine a few cycles in the ordinary way 
without updating the Y-2 relations. The procedure has 
been tested extensively and was found to be a valuable 
alternative to the M U L T A N 7 8  routine F A S T A N .  
Especially in space groups like P1, P21 etc., the 
number of reasonable non-trivial solutions increases 
considerably, thus enhancing the chance of finding 
the correct one. For example, applying it to the test 
structure of the main text with all triple-product 
phases initially set equal to zero resulted in 16 differ- 
ent solutions out of 64 different starting points. Their 
figures of merit varied from 1.41 to 1.02 for 
ABS FOM, 2.70 to 1.20 for PSI ZERO and 27.34 to 
10.45 for RESID. Unfortunately, the E maps calcu- 
lated from he six most promising sets (based on the 
COMBINED FOM) did not contain any interpret- 
able lactate fragment among the 30 highest peaks. 
The current version of the program still lacks the 
possibility of a magic-integer representation of the 
phases in the starting set and is only capable of 
employing the 'old fashioned' quadrant permutation. 
To limit the amount of computing time not more than 
three general structure-factor phases are normally 
permuted which results in 64 different starting sets. 
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Abstract 

Physical phenomena such as incommensurate phases 
or diffraction enhancement of symmetry are inter- 
preted by using symmetry groups in four, five or six 
dimensions. This first paper concerns the point- 
symmetry operations (PSO) in these Euclidean super- 
spaces. Elementary, non-elementary, degenerate and 
non-degenerate PSOs are defined and their 
geometrical supports and geometrical symbols are 
specified. A geometrical description is thus given of 
nineteen types of PSO which are either the crystallo- 
graphic rotations of the four-dimensional space or 
the crystallographic rotations and improper rotations 
of the five-dimensional space or the improper crys- 
tallographic rotations of the six-dimensional space. 
These PSOs are elements of crystallographic point 
groups of these spaces and the physical application 
to polar point groups is given. 

* Present address: DRF-DN-CENG, 38041 Grenoble CEDEX, 
France. 

5- Present address: Recherches en Sym6trie Cristallographique 
S6tif A5, 35 Cit6 du 8 mai 1945, S6tif, Algeria. 
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General introduction 

Regularities observed in the diffraction pattern of a 
crystal and not explained by the three-dimensional 
Euclidean symmetry-cal led external space sym- 
met ry-  are interpreted as due to Euclidean symmetry 
in a (3 + d)-dimensional superspace involving d addi- 
tional dimensions, called internal dimensions (Janner 
& Janssen 1980). 

The following cases of incommensurate phases are 
well known; according to whether the incommensura- 
bility is parallel to a crystallographic direction, to a 
direction of a crystallographic plane or to any direc- 
tion of the crystal, one, two or three additional (inter- 
nal) d dimensions may be introduced (de Wolff, 1974; 
Comes, Lambert & Zeller, 1973; Janner & Janssen, 
1977; Yamamoto, 1982). 

The symmetry of diffraction patterns of some 
layered or intercalate crystals may be higher than that 
corresponding to the Friedel-Laue class (Sadanaga 
& Takeda, 1968; Marumo & Saito, 1972; Iwasaki, 
1972). This phenomenon has been termed 'diffraction 
enhancement of symmetry' and two types-s imple  
and doub le -have  been analysed (Perez-Mato & 
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